自然常數e就是\(lim(1+1/x)^x\),x→+∞或\(lim(1+z)^{1/z}\),z→0,其值約為2.71828,是一個無限不循環數。
e,作為數學常數,是自然對數函數的底數。有時稱它為歐拉數(Euler number),以瑞士數學家歐拉命名;也有個較鮮見的名字納皮爾常數,以紀念蘇格蘭數學家約翰?納皮爾引進對數。它就像圓周率π和虛數單位i,e是數學中最重要的常數一。
指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為e,這里的e是數學常數,就是自然對數的底數,近似等于 2.718281828,還稱為歐拉數。一般地,y=a^x函數(a為常數且以a>0,a≠1)叫做指數函數,函數的定義域是 R
輸入x(<=709): 5
點擊"計算",輸出結果
ex: 148.41316